Copiado al portapapeles
Descripción
Juan es un niño, como a todo niño le gustan los dulces, cuando caminaba por la calle vio $N$ tiendas dispuestas en un circulo enumeradas de $1, 2, ... , N$, como las tiendas vendian dulces fue inmediatamente hacia ellas, la tienda $i$ - ésima vende dulces a un precio $N_i$, cada tienda tiene un número ilimitado de dulces.
Juan tiene $K$ bolivianos, el desea gastar toda la plata si es necesario para adquirir dulces, para comprar algún dulce sigue los siguientes pasos.
- Al principio, visita la tienda numero $1$.
- Si tiene suficiente plata para comprar $un$ $dulce$ de la tienda actual, entonces lo comprá inmediatamente.
- Luego pasa a la siguiente tienda en orden de las agujas del reloj (independientemente si compro un dulce o no).
Como la cantidad de dinero que tiene Juan es finita, el proceso terminará en algún momento.
Calcule la cantidad de dulces que comprará Juan siguiendo los pasos anteriores.
Entrada
La primera linea contiene dos números enteros $N$ y $K$, $(1 \leq N \leq 2 * 10 ^ 5, 1 \leq K \leq 10 ^ {18})$ la cantidad de tiendas que hay y la cantidad de dinero que puede gastar Juan.
La segunda linea tiene $N$ enteros, $(1 \leq N_i \leq 10 ^ 9)$, cada entero denota el precio de un dulce en la $i$ - ésima tienda.
Salida
Imprime un entero que denota la cantidad de dulces que Juan puede comprar.
Ayuda
Tienda $1$: compra $1$ dulce por $1$ Bs, entonces $K = 6$.
Tienda $2$: compra $1$ dulce por $3$ Bs, entonces $K = 3$.
Tienda $3$: compra $1$ dulce por $1$ Bs, entonces $K = 2$.
Tienda $1$: compra $1$ dulce por $1$ Bs, entonces $K = 1$.
Tienda $2$: no se puede comprar el dulce, ya que cuesta más del dinero que tiene.
Tienda $3$: compra $1$ dulce por $1$ Bs, entonces $K = 0$.